A Working Hypothesis for General
Intelligence

Eric Baum
Baum Research Enterprises
ebaum@fastmail.fim
http://whatisthought.com

Abstract. Humans can construct powerful mental programs for many domains never
seen before. We address the questions of how this occurs, and how it could possibly be
accomplished in software. Section one surveys a theory of natural understanding, as
follows. One understands a domain when one has mental programs that can be executed
to solve problems arising in the domain. Evolution created compact programs
understanding domains posed by nature. According to an extrapolation of Occam's
razor, a compact enough program solving enough problems drawn from a distribution
can only be found if there is simple structure underlying the distribution and the
program exploits this structure, in which case the program will generalize by solving
most new problems drawn from the distribution. This picture has several important
ramifications for attempts to develop Artificial General Intelligence (AGI), suggesting
for example, that human intelligence is not in fact general, and that weak methods may
not suffice to reproduce human abilities. Section 2 exemplifies this picture by
discussing two particular thought processes, the mental program by which I solve levels
in the game of Sokoban, and how I construct this mental program. A computer program
under construction to implement my introspective picture of my mental program is
based on a model of a particular mental module called Relevance Based Planning
(RBP). Section 3 argues that programs to address new problems (such as my mental
program to play Sokoban) can be constructed (both naturally and artificially) if and
only if sufficient guidance is already present. It proposes a computational structure
called a scaffold that guides rapid construction of understanding programs when
confronted with new challenges.

Introduction

A striking phenomenon of human intelligence is that we understand problems, and can
construct powerful solutions for problems we have never seen before. Section one surveys

mailto:ebaum@fastmail.fm

a theory under which one understands a problem when one has mental programs that can
solve it and many naturally occurring variations. Such programs are suggested to arise
through discovering a sufficiently concise program that works on a sufficiently large
sample of naturally presented problems. By a proposed extrapolation of Occam's razor,
such a concise effective program would only exist if the world posing the problems had an
underlying structure that the program exploits to solve the problems, and in that case it will
generalize to solve many new problems generated by the same world. It is further argued
that the concise Occam program leading to human and natural understanding is largely
embodied in the genome, which programs development of a modular program in the brain.
We build upon this modular program in constructing further mental programs.

Section 2 exemplifies this picture by discussing two particular thought processes, the
mental program by which I solve levels in the game of Sokoban, and how I construct this
mental program. A computer program under construction (with Tom Schaul) to implement
an introspective picture of my mental program is based on a new approach I call Relevance
Based Planning (RBP). RBP is suggested as a model of a human planning module. By
invoking domain dependent objects, it exploits the underlying structure of its particular
domain, which in the case of Sokoban involves exploiting 2-dimensional structure. Several
other domain dependent modules, intended to reproduce introspection, are under
development.

Section 3 proposes a computational structure called a scaffold that provides guidance
on how to rapidly construct understanding programs when confronted with new challenges.

A general contrast between the point of view of this paper and much work in AGI or
Human Level Al, is that this paper is focused on the problem of how one can construct
programs that understand new problems and problem domains. Much current work is based
on systems that are expected to run existing programs, and either avoid facing the issue of
automatically constructing new code, or assume it can be done by weak methods. The
theory presented here argues that understanding is based on Occam programs, which are
computationally expensive to find, because one must solve a hard computational problem
to construct them. The necessary programs, for example in Sokoban, seem to be rather
complex. Accordingly, I suggest that human intelligence is not really "general", but rather
is powerful only at exploiting a class of problems arising in the natural world, and
problems solvable with modules arising from these. New programs solving a new domain
can be feasibly constructed only when one already has much of the computational
structures necessary to build them, so that the search for the new program is tractable. This
contrasts, for example, with the assumption that intelligence is based on weak methods--
methods not exploiting much knowledge [1]. Instead, I argue that understanding is based
on having powerful domain dependent knowledge, and address the questions of how we

can build such knowledge, what form it takes in humans and what form it should take in
attempts at building human-level Al, and how it guides search for new programs.

Natural Intelligence

Turing argued compellingly that whatever is happening in the brain, it could be
simulated in detail by a computer running the right software. Thus thoughts must be
isomorphic to some particular computations. Turing's thesis gives us a precise language
which we can use to discuss and model thought, the language of computer programs. This
thesis, however, left us with some puzzles. A first important one is: what about this
particular code causes it to understand? A second important one is: given that complexity
theory has indicated that many computations are inherently time consuming, how does the
mind work so amazingly fast?

Computational learning theory has explained generalization as arising from Occam's
razor. The most studied context is concept learning, where one sees a series of classified
examples, and desires to learn a function that will predict correctly whether new examples
are examples of the concept or not. Roughly speaking, one can show that if one presents
examples drawn from some process, and finds a simple enough function classifying most
examples in a large data set, it will also correctly classify most new examples drawn from
the process on which it hadn't been been specifically trained, it will generalize. Results
along these lines from three viewpoints (VC dimension, Minimum Description Length,
and Bayesian probability) are surveyed in chapter 4 of [2]. Yet another branch of related
results can be found in the literature on universal algorithms, cf [3,4].

Such approaches start by formalizing the notion of what is meant by ““simple". One
way is by program length, a shorter program (or alternatively, a shorter program that runs
within a given time bound) is considered simpler.

A basic intuition behind these kinds of results is the following. If the process
producing the data was not structured, the data would look random. No extremely simple
program would then exist dealing correctly with the seen data. The fact that you are able to
find a compact program correctly classifying massive data thus implies that the process
providing the data actually had a compact structure, and the program was exploiting that
structure to make predictions.

Such results have been known for decades, so why do we not yet have programs that
classify concepts as well as people do? An answer is, we are unable to actually find a
compact program (say a compact neural net) correctly classifying most interesting kinds of
data, even for sets where people could classify. In fact, for a wide variety of sample

problems, it has been proved NP-hard to find such compact programs, which indicates
there can be no fast solution. The reader may be familiar with the Zip utility, in common
use to compress computer files. Zip embodies a simple algorithm that runs rapidly, but is
largely oblivious to the file being compressed. Generalization, by contrast, requires
extracting the simple underlying structure particular to a given data set thus achieving a
much smaller compression, and can not be done rapidly in such a generic fashion. It is
only after the point where data is compressed beyond what is easy or generic that the
underlying structure becomes apparent and meaningful generalization begins, precisely
because that is the point where one must be sensitive to specific, surprisingly compact
structure of the particular process producing the data. When such compression can be
accomplished in practice, it is typically done by some algorithm such as back-propagation
that does extensive computation, gradually discovering a function having a form that
exploits structure in the process producing the data.

The literature also contains results that say, roughly speaking, the only way learning is
possible is through Occam's razor. Such no-go theorems are never air tight -- there's a
history of other no-go theorems being evaded by some alternative that escaped
conception-- but the intuition seems reasonable. A learner can always build a complex
hypothesis that explains any data, so unless the space of possible hypotheses is highly
constrained by some inductive bias, there is no reason why any particular hypothesis
should generalize. Note that the constraint does not have to be shortness of program-- in
fact evolution seems to use a form of early stopping rather than just building the shortest
hypothesis.

Human thought and understanding, of course, seem to encompass much deeper
abilities than simple concept classification. However, the basic Occam intuition behind
such classification results can be straightforwardly extrapolated to a conjecture about a
general program interacting with a complex world: If you find a short enough program that
rapidly solves enough problems, that can only be because it exploits compact structure
underlying the world, and then it will continue to solve many later problems presented by
the same world.

My working hypothesis is that this exploitation of structure is what understanding is.
Humans are based on a compact program that exploits the underlying structure of the
world. So, for example, we can solve new problems that we were not explicitly evolved to
solve, such as discovering higher mathematics, playing chess or managing corporations,
because underlying our thought there is a compact program that was trained to solve
numerous problems arising in the world, so many that it could only solve these by
exploiting underlying structure in the world, and it thus generalizes to solve new problems
that arise.

How does a very concise program deal with many problems? Experience and a
number of arguments suggest, by code reuse. It can be so concise by having a modular
structure, with modules exploiting various kinds of structure that can be put together in
various ways to solve various problems. As evolution produced a compact program to deal
with the world, it discovered such modules.

This may explain why thought is so metaphorical. Metaphor occurs when we reuse a
module associated with one context, to exploit related structure in another context. So when
we speak of buying, wasting, spending, or investing our time, we are reusing a
computational module or modules useful for valuable resource management. When we
speak of buttressing the foundations of our arguments, we are reusing modules useful for
building concrete structures. And so on.

Note that the kind of exploitation of structure involved here is rather different than
what we usually think of in simple classification or prediction problems. If we simply find
a concise enough program (for example, a small enough neural net) correctly classifying
data points (for example saying whether images show a chair or don't), it will generalize to
classify new data points (e.g. images) drawn from the same process. But simply finding a
compact description of structure can be a separate problem from exploiting compact
structure. In the Traveling Salesman Problem, for example, we are handed a concise
description of the problem, but it is still computationally hard to find a very short tour.
Roughly speaking, to find the shortest tour, we will have to search through a number of
possibilities exponential in the size of the description. The claim is that the world has
structure that can be exploited to rapidly solve problems which arise, and that underlying
our thought processes are modules that accomplish this. And for many problems, we
accomplish it very fast indeed.

Consider, for example, the integers. That the integers have a compact structure is
evident from the fact that all of their properties are determined by 5 axioms-- but beyond
this you know algorithms that you can use to rapidly solve many problems involving them
(for example, to determine if a 50 digit number is even). My working hypothesis is that our
mathematical abilities arise from Occam's razor. Roughly speaking, we have these abilities
because there is a real a priori structure underlying mathematics, and evolution discovered
modules that exploit it, for example modules that know how to exploit the structure of
Euclidean 2 and 3 space. By evolving such modules we were able to solve problems
important to evolution such as navigating around the jungle, but such modules perforce
generalize to higher problems.

Mathematical reasoning is one example of an ability that has arisen this way, but of
course the collection of modules we use to understand the world extends far beyond, as
seen for example from the explanation of metaphors above. My working hypothesis is that

each concept, basically each word in English, corresponds to a module (or at least, a
method).

I expect that the mind looks like some incredibly elegantly written object-oriented
code. That water is a liquid is presumably more or less represented by the class water
having a superclass liquid, from which it inherits methods that allow you to mentally
simulate it flowing, as well as solving various problems involving it. Experience indicates
that such things are not readily coded into logic, especially not first order logic. Rather, I
expect humans accomplish inference by using special procedures, that know how to do
things like simulate liquid flows. My working hypothesis is that the brunt of inference by
humans is not carried by modus ponens or some such general inference mechanism, it is in
the various procedures that encode methods exploiting particular aspects of the structure of
the world, such as the a priori structure of Euclidean 2 space or 3 space, the physics of
liquids and hard objects and gases and so on. Thought is too fast to involve extensive
searching over proofs, rather it is put together by executing powerful procedures encoded
into a library. I expect words are more or less labels for code modules (roughly speaking
nouns are classes and proper nouns instances of classes and verbs methods) so there may be
tens of thousands of modules in the library. As we will discuss in Section 3, when we come
to understand new problems, we do engage in search over programs, but it is a search so
heavily biased and constrained by existing structure as to occur in feasible time.

Where in a human is this compact Occam program encoded? A number of arguments
indicate that a critical kernel of it is encoded into the genome.

The genome is extraordinarily compact. Its functioning core (after the so-called "junk"”
is stripped away) is believed to be smaller than the source code for Microsoft Office. The
brain, by contrast, is 100 million times bigger. Moreover the genome encodes, in a sense,
the results of an extraordinary amount of data and computation: Warren Smith has recently
improved on my estimate, and the best estimate now appears to be that some 10* creatures
have lived and died, each contributing in a small measure to evolution (footnote 95 in [5]).

The proposal of the genome as the Occam program is controversial, because many
psychologists, neural network practitioners, and philosophers have argued that infants are
born in a state of tabula rasa, a blank slate from which we acquire knowledge by learning.
Learning theory, however, requires one have an inductive bias to learn. In my picture the
genome encodes this inductive bias, programs that execute, interacting with sensory data,
to learn. The learning so innately programmed appears quite automatic, reliably resulting in
creatures with similar abilities provided that they are allowed interaction with the world
during development.

Complexity theory suggests that learning is a hard problem, requiring vast
computation to extract structure. Yet we learn so fast that we do not have time to do the

requisite computation. This is possible only because creatures are preprogrammed to
extract specific kinds of meaning. The bulk of the requisite computation, and thus the guts
of the process from the point of view of complexity theory, went into the evolution of the
genome.

Empirical evidence shows that creatures are in fact programmed with specific
inductive biases. If a rat is shocked once at a specific point in its maze, it will avoid that
corner. If a rat is sickened only once after eating a particular food, it will never eat that type
of food again. However it is difficult to train a rat to avoid a location by making it sick or to
avoid a type of food by shocking it. The rat is innately programmed to learn particular
behaviors from particular stimuli. Similar results hold true for people. A wealth of evidence
supports the view that children learn grammar rapidly and almost automatically, because
of strong inductive bias built into their brain by their genome. Moreover, while humans can
learn ““meaningful” facts from a single presentation, they would find it almost impossible
to learn things they are not programmed to recognize as meaningful. This meaning is, in
my picture, defined by underlying programs, largely coded into the genome, that exploit
particular underlying structure in the world. Such programs, in fact, essentially define
meaning.

Consider the development of visual cortex. The brain uses parallax to calculate the
depth of objects. This calculation must be tuned to the width between the eyes. The DNA
program is the same in every cell, but its execution differs from cell to cell as the chemical
environment differs. As the brain develops, and the skull grows, the DNA program
automatically adjusts brain wiring to compute depth. How did this evolve? DNA programs
that better develop function in the chemical environment were preferentially selected. But
the chemical environment in cortex includes neural firings stimulated by the sensory flow.
Thus a program evolved that, in effect, learns the distance between the eyes. Similarly, the
same DNA programs cells to develop into visual cortex or auditory cortex depending on
the ambient environment of the developing cell. Similar mechanisms would explain
development of more abstract thought, for example, Seay and Harlow's famous discovery
that monkeys can only acquire normal social behavior during a critical period in
development. Critical periods are a flag indicating genomic programming, as many aspects
of development are carefully timed. The DNA program exploits the sensory stream
(reflected in the chemical environment of developing cells) to grow appropriate neural
structures, which may implement powerful procedures for reasoning about the world.
Learning and development are two sides of the same coin, and so we should expect
evolution of tailored learning programs.

If the genomic program encodes development of modules for a variety of meaningful
concepts, everything from valuable resource management and understanding 2-topology to

causal reasoning and grammar learning, this should be manifested through local variations
of gene expression in developing brains. Gray et al. recently published an image in Science
magazine that seemed to show quite detailed structure in gene expression [6]. As the
technology improves, gene expression data should show programming of the kind required
by this theory, or refute it.

The working hypothesis proposed here is that the genome encodes a compact
“Occam" program that (metaphorically) ““compiles", interacting with sense data, into
executable modules we use to perceive and reason. The modules that are built may be
relatively large and complex, yet still generalize because they are constrained by the
compact genome. Lakoff and Johnson have cataloged so many diverse types of causal and
temporal reasoning that they suggest there can exist no "~ objective metaphysics" of time or
causality [7]. I believe this is mistaken. Our universe does indeed display amazingly rich
phenomena, but these all arise from an amazingly concise underlying physics. Our mental
modules are varied, but constrained by a concise program to exploit this concise structure.
Thus all the different types of causal reasoning are related and constrained.

The human mind evidently employs algorithms not explicitly coded in the genome.
For example, the reader has procedures that allow him or her to read this text. Such
knowledge is built as meaningful modules that invoke more basic modules. Experience
suggests that complex programs must be built in such a modular fashion, sometimes called
an abstraction hierarchy. The Occam's razor hypothesis suggests that the modules coded in
the genome are meaningful precisely in the sense that powerful programs can be built on
top of them. That is: these compact modules are such that in past experience, powerful
programs have emerged to solve problems such as navigating in the jungle, therefore these
modules should be such that powerful superstructures will emerge in new domains such as
reasoning about higher mathematics.

Finding new meaningful modules is a hard computational problem, requiring
substantial search. This suggests a mechanism by which human mental abilities differ so
broadly from chimpanzees, who are genetically almost identical. Chimpanzees can
discover new meaningful modules only over one lifetime of study. But humans, because of
our ability to transmit programs through language, have cumulatively built and refined a
vast library of powerful computational modules on top of what is coded in the genome.

This additional programming does not just include what we think of a technology, but
rather includes qualities regarded as core mental abilities. For example, only humans are
said to have a theory of mind in that we understand that other individuals may have
different beliefs than our own, and reason accordingly. However, apes display behaviors
indicating aspects of theory of mind; and plovers feign injury, limping off to distract a
predator from their nest, only when the predator seems to notice the nest. Thus plovers

attend to the perception of the predator and modify their behavior accordingly. This ability
requires subroutines on which any theory of mind must rely. This suggests that the human
theory of mind is a complex modular program built on top of meaningful modules coded
more explicitly in the genome, and that humans have been able to discover this more
powerful program over generations, because we pass partial progress on. Bedtime stories
and fiction are means of passing such programs on to children. Psychophysics experiments
are consistent with this view, showing that children acquire theory of mind over a period of
years.

Thus this computational theory of mind, while it suggests that much of thought is
coded in the genome, simultaneously suggests that most of the difference between human
and ape cognition can be regarded as the product of better nurture. The key is that the
program of mind is modular and hierarchic, and that the discovery of new modules is a
hard computational problem. By virtue of our ability to communicate partial results,
humans have made sustained progress in developing an ever more powerful superstructure
on top of the innately coded programming.

In summary, computational learning theory has made a compelling case that
generalization comes from Occam's razor. Understanding can be explained by a simple
extrapolation of this as arising from evolution of a compact genomic program that builds a
set of procedures that exploit the underlying structure. This and many other aspects of
thought (for example, why the various aspects of consciousness, both subjective and
objective, arise in this fashion), are explained in much more detail (and with many more
citations) in [2], where some alternatives to the above working hypothesis are also briefly
discussed.

This picture suggests that a truly ““general" intelligence is unattainable. Humans solve
new problems very fast when we already have modules for dealing with them. Over hours
or years, humans can solve somewhat more general new problems, those requiring
construction of new code or new mental modules, only when we have modules that can be
put together with only a reasonable amount of search (possibly guided or orchestrated by
modules designed for putting other modules together into the right code). But according to
the Occam thesis, all this machinery only works for problems in some sense drawn from a
natural distribution of problems-- relating to the a priori structure of mathematics and the
underlying compact structure of our universe. General problems (a likely example is given
by arbitrary problems in the class NP) may simply not be rapidly solvable. Universal
methods may be given that are argued in one sense or another to address such problems as
well as possible [3, 4], but such solutions may take arbitrarily long and in my opinion don't
relate directly to human intelligence; and may distract from what we want to study in AGI.
To achieve AGI, I suggest, we will need to develop the kinds of modules on which human

thought is built, that exploit the kind of underlying structure in our universe.

This picture explains why many Al programs do not seem to display ““understanding"
[8]. These programs were not compact or constrained. Mostly, they were simply built by
human programmers without Occam's razor in mind. Arguably, Al programs that have
displayed some understanding have been built on very compact structures. For example,
the core of chess programs such as Deep Blue, which do seem to understand chess quite
well, is tiny: a program consisting of alpha-beta (a few lines of code) plus simple material
as an evaluation function (also a tiny program) plus a short quiescence search routine
would already play phenomenal chess if applied in an 11-ply search'. If we want to build an

' Some readers may be suspicious of the assertion that Deep Blue in some sense understands chess since it does
a huge search. A referee notes, for example, that a completely brute force exhaustive search program, a very few
lines of code, would solve any finite problem eventually. In an attempt to capture normal notions of
understanding, and yet discuss the subject in a concrete way, let us consider that an entity understands an item (or
a domain) if it almost always does the right thing on the item or domain, and on almost all naturally occurring
variations of it, and behaves in a reasonable way on other variations of it. By this definition, Deep Blue clearly
understands most chess positions: pick almost any chess position you like, and it will make the right move.
Moreover, Kasparov attempted to play toward types of positions not normally occurring in human play in a
deliberate attempt to stump it, and largely failed. Moreover, you could vary the rules of chess within some
reasonable range, and alpha-beta + material + quiescence would still play well-- if you vary far enough, you will
have to change the evaluation function, but if you allow tweaks like that, the same methods extend strongly all the
way in variation space to, for example, Othello. Thus this analysis technique provides a useful basis for a scaffold,
that may be applied to understand various games, cf section 3. That is, a scaffold that learns an evaluation function
and fits it into the alpha-beta + evaluation function + quiescence framework has so much bias, it could readily
learn to process a wide variety of games effectively. In my view, this is not so dissimilar from how I might pick up
a new game (although I would adjust and apply other scaffolds as well.) Similarly, the exhaustive search algorithm
would indeed be said to understand finite problems, where one has the resources to perform the computation. (Its
worth noting in passing that Deep Blue is very far from brute force, since it arrives at its determinations while
examining an infinitesimal fraction of the search tree, indeed it examines a finite search tree yet would presumably
be effective for many variations of chess with an infinite search tree.)
It's not hard to give positions which Deep Blue doesn't understand (cf (Baum 2004)for discussion).
The simplest way is to consider variations where humans analyze the problem from a different angle that is
impervious to scaling, and you consider the problem on an n by n board as n gets large. The same applies to the
exhaustive search algorithm. So I am not claiming that Deep Blue's understanding is the same as ours -- we have
many more modules and scaffolds in our minds that allow us better understanding.

It might be objected that time complexity should figure in understanding, and indeed it does. I am
implicitly positing that the colloquial notion of understanding is relative to the amount of time alloted. Thus to be
said to understand, the entity must do the right thing fast enough. For example, I might be said to understand some
branch of mathematics if I could prove deep theorems in it, even though this might take me years, but you
wouldn't say I understand it just because I might prove such a theorem if you gave me a millennium. Deep Blue,
which as noted above is not brute force, is fast enough to work in tournament time limits, and in fact it's very far
from apparent that Deep Blue does more computation than I do in understanding a chess position.

The main point I am making, however, is that generalization and thus understanding follows from an
extrapolated Occam's razor. When you find a very constrained program that's effective on a large collection of

AGI, we will have to build something that reflects the Occam property.

It is possible that we will never have the computational resources to accomplish this.
Finding Occam programs seems to generically be NP-hard at least, and thus may require
extensive computational effort. A human may be no more able to sit down and write
Occam programs exploiting the structure of the world in the way the mind does, than a
human is able by hand to solve other NP-hard problems. Evolution had more computational
resources for solving this problem than we ever will. On the other hand, we start with a big
advantage-- our brains. The most promising approach, as I see it, is thus to build the AGI
by a collaboration of human programmer and computer. The humans must encode as much
inductive bias as possible, and extensive computation must build on this to construct
Occam programs.

One problem with this Occam picture is that it doesn't necessarily tell us what the
Occam code looks like, beyond being very compressed and produced by evolution. In fact,
it suggests that there is no much better understanding of the Occam code than the code
itself, since understanding comes from a compressed description, and the Occam code is
already so highly compressed that further compression, if it even exists, should be very
difficult to find. Moreover, according to the Occam intuition (and some of the formal
results on which it is based), any very highly compressed program effective on the data
seen, rather than only the most compressed possible program, is sufficient for
generalization. NP-hard problems such as that of finding such compressed descriptions
often have large numbers of local optima, which may look unlike one another in detail. For
example, for any huge planar Traveling Salesman Problem, almost any planar tour will be
quite short but such tours may share very few links”. This explains why the inner workings

examples, so constrained that it should not exist unless there is some very special structure underlying the
examples, then it will generalize. If you find a program that is not so constrained yet works on the same set of
examples, it can not be expected to generalize. The constraints here are a restriction on the representation space--
the program space must be constrained in the sense that it effectively can not represent all functions, so that it is
unlikely that a solution to a random problem falls in the space. Thus lookup tables of size comparable to the
number of examples, although they are blindingly fast, are not constrained and will not generalize, and many Al
programs are akin to this. However, I do not restrict to code length as the only possible constraint. It is entirely
possible that one might achieve generalization with constraints that combine a time restriction and coding
restrictions, and indeed I implicitly assume throughout that the Occam program solves the training examples fast
enough. As discussed in chapter 6 of [2], evolution actually seems to have employed as constraints a combination
of early stopping, evolvability (which strongly affects what representations are achievable), code length, and time
complexity.

* Boese [12] found empirically that most short tours found by local search algorithms are related. However,
there are an exponential number of locally optimal (for example, planar) tours and one could easily construct
examples at various edit distances. Even in relaxation systems, such as metals or crystals, where it is trivial to
compute the global optimum, physical relaxation processes produce domain structures, and two different
configurations of domains will have substantial hamming distance.

of trained neural nets are sometimes inscrutable. On the other hand, in my working
hypothesis, the Occam core is in the genome, and the program in the brain is rather larger,
thus admitting of a shorter description, so we might expect to be able to say something
about the code in the brain. In the next section, I discuss a simple but highly non-trivial
example of thought, attempting to further illuminate the nature of the code and how it is
produced.

Introspective Sokoban

Sokoban is a single player game consisting of a collection of two dimensional planning
puzzles called levels. The player controls a robot that can push barrels around a maze (see
figure). Only one barrel can be pushed at a time, and the object is to push all the barrels
into marked goals. The game is best understood by playing a few levels-- numerous levels
can be found on the web cf: [9,10]. Sokoban is p-space complete [11] so there is no hope of
producing a (fast) general solver’.

3Roughly speaking, the standard proof that a particular problem class C is hard is given by showing that you
can map another hard problem class H into it. Since there is (believed to be) insufficient underlying structure to
solve H rapidly, this then exhibits a subclass of C that is not (believed to be) rapidly solvable. In the case of
Sokoban, the proof proceeds by constructing, for any given Turing machine with given finite tape length, a
particular Sokoban instance that is solvable if and only if the Turing machine halts in an accepting state. This
leaves (at least) two outs for solving problems in C rapidly. First, since the mapping is into, with range only a
small subset of instances of C, almost all instances of C may be rapidly solvable. For example, in the case of
Sokoban, it intuitively seems that random instances can only be hard if they have a high enough density of barrels
and goals, because otherwise solving the different goals decouples. Furthermore, it is plausible that random
solvable instances with too high a density of barrels and goals would be over-constrained and hence readily
solvable by algorithms that exploit over-constrainedness, which I believe humans often do, including in Sokoban.
It would be an interesting experiment to write a random instance generator and see in what domains humans can
easily solve large random Sokoban instances. Second, such mappings generically map a problem instance in H of
size S into a problem instance in C of size Sk, for k some constant of rough order 100. Thus an option for solving
instances in C that derive from instances in H is to perform the inverse mapping, and apply an exponential time
algorithm for solving instances in H. This will be practicable for substantial (although of course, not asymptotic)
instances of C. Human strategies for Sokoban, roughly speaking, exploit both these avenues. They attempt local
solutions, which will work if the density of constraints is low and the problem factors. They also propagate
constraints arising from barrel interactions causally, which seems likely to solve over-constrained random
problems, and also ferrets out mapping structure.

_ g
T I P

L T T T T

7 1 o 5 o Y B =

=
1T 11T 171 171 1 f’
I I I I IES
[o £

[P I I ! P ! Y e
[B 7 B 7 O R B R FR O R B ER ER R 2 1
T] [[t [[[i 3 [

ipligiug!

i*'l

Humans have however crafted a large collection of ingenious levels that humans find
interesting to solve. One reason the domain is interesting for students of AGI, in fact, is that
these levels appear to have been crafted so as to exercise a range of human cognitive
abilities.

From the point of view of understanding general intelligence, we are interested in two
problems. After having practiced the game for a while, I have a toolbox of techniques-- a
mental program involving several distinct modules-- that I apply to solve new levels. The
first problem is, what does this mature program look like? The second problem is, how do I
build this program when I first begin playing Sokoban? The key problem in both cases is
time complexity. Searching over all possible solutions, and all possible short programs for
solving Sokoban, is way too slow. So we must have vast knowledge that we bring and use.
Since all our thoughts correspond to computations, my working hypothesis is that this
knowledge is in the form of some procedural program like the kind described in the first
section that allows us rapidly to construct an effective solving program. We come to the
game with numerous modules useful for problems such as planning in 2 dimensions, for
example modules that calculate aspects of 2-topology like the inside of an enclosure, and
modules that perform goal-directed planning. Using this head-start, we rapidly construct
(within minutes or weeks) programs for analyzing Sokoban and other problems we
encounter.

Introspection into my mature thought processes in Sokoban-solving motivated the
design of a general planning approach that I call Relevance Based Planning (RBP). RBP
may be viewed as a domain independent core algorithm that organizes computation using a
number of domain dependent objects. RBP employs modules that specify various domain
dependent knowledge, including all or some of the following: identifying which classes of
objects in the domain are potentially affectable by operators, specifying methods for
dealing with classes of obstacles, specifying contra-factual knowledge about what states

would be reached by applying not-currently-enabled operators in a given state if affectable
obstacles to applying them could be dealt with, identifying local configurations of objects
that prevent solution of goals (comprise a deadlock), and, where multiple potentially
interacting goals are to be achieved, analyzing constraints on the order in which goals can
be achieved.

RBP first applies a method to find candidate plans that could potentially succeed in
solving the problem if various affectable obstacles could be dealt with. An example of such
a candidate plan might be a plan to get from point A to point B, which has to get through
two locked doors, but otherwise does not need to do anything impossible, such as teleport
through a wall. A powerful way to generate such candidate plans is by dynamic
programming, invoking the contra-factual knowledge (eg to say, if only I could unlock this
door, I could get to the other side, and doors are known to be potentially unlockable, so I
will proceed to see if there is a path from the other side to my goal). RBP then refines such
candidate plans to see whether the obstacles can be dealt with. By proceeding in time order,
it deals in this refining only with states it knows it can reach (thus avoiding much irrelevant
work often engaged in by planners). If it hits a deadlock or other obstruction, it employs
domain-specific knowledge for dealing with it (e.g. applies a module for dealing with that
particular obstacle class, such as a module that searches for a key and uses it to unlock a
door, or, because it knows what elements of the domain are comprising the deadlock, tries
to move them out of the way in ways that would prevent the deadlock from arising). Also,
as it takes actions on the domain simulation, it marks affected objects. If an affected object
later obstructs a desired action, it considers the alternative plan of doing the other action
first, to see if it can escape the obstruction. It contains a procedure for ordering the search
over possible candidate plans in an optimized fashion and a hash table over states to avoid
duplicating work. The algorithm that results is called Relevance Based Planning because it
searches only possible actions that are directly relevant to achieving the goal, that is: are
refining a candidate plan already known capable of achieving the goal if certain obstacles
known to be potentially affectable are dealt with, and furthermore are actions that actually
affect a relevant obstacle or are relevant to a plan to affect a relevant obstacle.

Tom Schaul and I first tested RBP on the sub-problem within Sokoban of getting the
pusher from point A to point B without creating a deadlock. The domain dependent
knowledge necessary for solving this task is relatively straightforward. Barrels can be
pushed, walls can not, if the pusher attempts to move somewhere and a barrel is in the way,
then the pusher may arrive in the position on the other side in the event that the barrel can
be dealt with, and so on. RBP solves this problem in a rapid, efficient and very natural way.
Introspection does not suggest any important differences between RBP and my mental

planning process on this problem®.

Schaul and I have since been extending this approach to tackle the general problem of
solving Sokoban instances. For this purpose a number of modules have been created. These
modules implement concepts that I believe I use in solving Sokoban, and thus illustrate the
procedural nature of human reasoning.

One is a deadlock detector capable of recognizing deadlocks arising from the inability
to get behind any barrier formed by barrels. If a deadlock is found, the detector returns a
list of the barrels comprising the deadlock (so that RBP can consider pushes of these
barrels relevant to preventing the deadlock from arising.) The concepts of "deadlock”,
"behind", and "barrier" are fundamental to human thought on Sokoban, and seem naturally
to require procedures to implement or recognize them.

Note that barriers are non-local (they can involve widely dispersed barrels that
nonetheless form a barrier separating one region of the level from another). RBP
straightforwardly follows complex causal chains of reasoning where it will attempt to move
a barrel involved in a barrier on the far side of the level in the effort to prevent a deadlock
arising when a barrel is pushed on the near side, while ignoring barrels that are not causally
involved.

Another module analyzes goal placement and returns orders in which the goals can be
solved. If the goals are solved in an invalid order, an earlier solved goal may prevent later
solution. Some orders may require that regions be cleared before a goal is solved, or that
barrels be stowed in particular locations before a goal is solved so that they will be in
position to later be moved into goals. The goal area analyzer calculates all such constraints
by finding a hypothetical barrel configuration from which the problem could be solved in
the given order. Note that the goal area analyzer, since it doesn't pay attention to the actual
locations of barrels in the domain, can return orders that are not in fact achievable from the
initial position of the Sokoban level, if the reason they are not achievable is because of
constraints to which it is not sensitive, such as if current positions of barrels block pusher

*All high level decisions are made by RBP in such a way that only a very restricted set of alternatives known
to be relevant are considered. As finer possibilities are encountered, RBP may run out of knowledge that restricts
what possible moves may be relevant. Then, if it wishes to be complete, it must search over all remaining possible
moves. For some problems, one could imagine improving it by giving it other or better procedures that rule out
some of these as irrelevant. In the problem of moving the pusher from point a to point b, if some barrel ¢ obstructs
a desired push, RBP might consider all pushes of ¢ as relevant, whereas a human might say that some of them
should be ruled out as not possibly useful. But the human has to do some computation to decide that this push is
not useful. Some of such computations are done, both according to my introspection and in our program, by
perceptual analysis, and others are done at the level of the planner. I wouldn't assert that the division is identical
between my mind and our program, only that I can't point to an obvious difference and don't expect any
differences on this problem are critical-- for example that they would lead to time-complexity scaling differently
as more complex problems are considered.

access which is necessary for achieving a given order. We have thus factored the problem
cognitively into the calculation of a valid goal order, and the calculation of how to push the
barrels into that order, or if the order is not achievable, finding a different valid order.
Introspectively, I use a related factorization.

Another module finds a bipartite match of all barrels to goals, where each barrel
matched to a goal is capable of being pushed to the goal if one disregards other barrels that
may be in the way. This is built on top of a "flowmap" that amounts to a perceptual analysis
of the Sokoban level. The flowmap is a concise data structure that contains a graph of all
possible pushes (under the assumption that all other barrels are deleted), and also indicates
the strongly connected components of the level. The matching analyzer thus reflects several
constraints on solution (such as the concept of 1-1 matching). I am not conscious of
mentally working out an exact assignment before starting in on every Sokoban instance--
but I am conscious of thinking about it whenever the instance is such that it may be
problematic, indicating I am attending to it.

Another module finds and implements forced moves. In Sokoban, it frequently
happens that once one is in a given position (very often the starting position has this nature,
but it also arises during search) a sequence of pushes is forced (up to transpositions),
because any other pushes will lead to deadlock. When such a circumstance is found, it
makes sense to immediately make this sequence of pushes rather than analyzing the current
position further. Again, introspection indicates that I interleave state space search in this
way with higher level cognitive analysis such as that computed by the other modules and
the overall planning algorithm.

The overall Sokoban program works by applying Relevance Based Planning to the
problem of solving a given Sokoban level. It first finds candidate plans that could solve the
level if affectable obstacles (namely, the other barrels) could be dealt with. Such a
candidate plan combines a valid goal order and a valid matching. It then refines such plans.
This involves a backtracking search where, when a given plan is ruled out, it backs up to a
previous branch that is relevant to solve the particular obstacle preventing the previous plan
from succeeding. It explores only backups and changes that are relevant to fixing a flaw in
a previously considered plan.

Schaul has implemented and largely debugged a first cut at all of the above modules,
but some components are not yet implemented efficiently or effectively enough, and
several have not yet been integrated. At present, our program is solving 31 of the 90
standard levels(Meyers).

A few comments on the effort as it stands. First, it is clear that I do calculate the above
modules. Some researchers are suspicious of introspection, but it is nonetheless objectively
verifiable that I calculate these concepts, because I can answer questions such as: “what

barrels in this configuration form a deadlock”. Unfortunately, the means I use to calculate
them do not seem introspectively to be the same as how Tom has coded them, and this is
causing difficulties-- his code sometimes has problems in calculating some one of these
modules that I find trivial. Nonetheless, I do compute similar concepts and integrate them
in related (but possibly more sophisticated) ways. My mature mental program has thus got
to be quite complex. I must have some ability to build this complex program on a timescale
of days. I would assert that any system aspiring to do human-level Al will need the
capability to build procedures of this general nature and complexity.

Second, it seems at best borderline possible to implement my mental program for
Sokoban by hand. Doing so has so far required a few man years of work, and is not yet
finished. Even if it can be accomplished for Sokoban, one might imagine that other
domains that are less well formalized would prove daunting. There are also a few
computational modules that I introspectively use in Sokoban that have not yet been coded,
and may prove beyond our abilities, or at least beyond our funding. It's not yet clear
whether these are essential, or whether instances I solve using them can all be solved
roughly as easily using other implemented techniques. Some of them certainly improve
efficiency. For example, I mentally cache meaningful computations in a way our system
does not yet capture. It's also plausible that if I encountered a new level that required a new
kind of technique, I would build it mentally, so simply implementing a program that solves
any given set of levels might not exhaust human capability.

But perhaps the biggest problem is, our ability to introspect about how modules
work seems limited. The top level RBP algorithm seems much more accessible to
introspection than the inner workings of the modules it calls. This is consistent with the
picture of consciousness put forth in chapter 14 of [2], where awareness is identified with
computations of a top level module that accesses lower level modules only through
procedure calls and the like, and is thus not able to directly examine their mechanism. As a
result, the algorithms implemented within the Sokoban modules are not necessarily similar
to the algorithms implementing similar computations within human thought, and it has
turned out as a result that they do not always perform adequately. It appears that such
modules will have to be learned, rather than hand programmed.

Code Construction and Scaffolds

Two key question are thus how do I mentally build an algorithm to play Sokoban when
I take up the game, and how can we produce a program that is capable of building such
programs when presented new problem domains?

My working hypothesis is that building such a program as fast as I do is only possible
if almost all pieces of the program are already constructed, and only a series of relatively
small searches is necessary to put them together. So I suggest that I have mentally already
something very much like an RBP module, that needs only to build the various domain
dependent objects in order to apply to Sokoban. And moreover, I have various modules
already present that are useful for building these modules. I am then able to build it by a
series of module constructions, each involving sufficiently small search that it is feasible.

Experience indicates that evolutionary programming is quite capable of producing
programs that solve interesting problem domains, if it is given sufficient guidance, for
example in the form of an instruction set containing pertinent macro-instructions, and a
series of increasingly hard problems that allow it to make each new programmatic
discovery in a feasible length of time. For example, Igor Durdanovic and I performed
experiments with an evolutionary program we called Hayek [13, 14, 2]. Hayek received at
least three kinds of guidance. First, it was based on an evolutionary economic system
designed to bias in the building of a modular program, and to rapidly prune candidate
modules not working in consort with the rest of the system. Second, it was presented
problems with considerable structure, and given training examples that increased in size
and difficulty as it learned. Third, it was given some guidance in the form of its instruction
set, which in some runs included useful macros. Given all this, it was able to rapidly
produce programs that solved interesting problems. Given a useful macro, it rapidly
generated a program that solved very large Blocks World Problems. Given an expression
language that allowed useful pattern matching and turned out to admit a 5 line program
solving arbitrary Blocks World instances, it generated such a program-- but only when
given syntax that restricted the search space by building in some aspects of the topology.
Not given such syntax, it failed for a simple and obvious reason-- it couldn't in a week of
computation find a program that solved even the easiest problems presented, and thus it got
no feedback whatsoever, hence was engaged in blind search. Control experiments using the
same instruction sets, but dropping particular aspects of the economic system, showed that
the economic system also provided helpful bias useful to the successful outcome.

Likewise, as I read Schmidhuber's description of his experiments building a Tower of
Hanoi solver [4], what jumps out is that after putting in a few carefully chosen macro-
instructions, and by training on increasingly larger instances, his system was able to find a
powerful program after affordable search’.

> Schmidhuber's paper emphasizes the bias-optimality of his program search technique. The extent to which
““bias-optimality" was helpful was not empirically tested by comparison to a hill-climbing alternative. Roughly
speaking, Bias-optimality was defined to mean, a search over possibilities for the shortest solution, where the
search never invests a much higher fraction of one's computation in a particular candidate than the likelihood that

We also tested such a hypothesis in preliminary experiments in Sokoban. Given
instructions such as ““getBarrelTo(B,L)" (which computed and applied a sequence of
pushes taking barrel B to location L) and "openupaZone" (which computed and applied a
sequence of pushes getting behind a nearby barrier), Hayek was rapidly able to create a
solver capable of solving an interesting Sokoban level [15].

What does introspection tell me about how I built my mental program to play
Sokoban? To begin with, when I approached Sokoban, I already had in my mind at the least
something much like RBP implementation of move(A,B) (the module that takes the pusher
from point A to point B). I use this for navigation constantly in real life-- calculating how
to get from my seat to go get a drink, for example, even if some chairs are in the way. This
module also (with minor amendment) allows me to push a barrel from point A to point B°.
Note also that animals need to navigate around the world. Although move(a,b) involves
somewhat complex code, it seems likely evolution discovered something like it and built it
in to the genome. After all, no-one doubts that evolution discovered and built in the
program for the ribosome, which is rather more complex.

I started doing pushing barrels toward goals,, and shortly encountered the possibility
that filling one goal would interfere with later goals. I then recognized that the problem
separated into bringing barrels up and finding a non-obstructive goal order, and built a goal
order analyzer. It's not entirely obvious how I recognized here that the problem factored--
my working hypothesis is that I essentially already knew it, because I had knowledge coded
in that I could analyze locally in space, and locally in time; that I could figure how to bring
an object into a space and then separately analyze how to use it there. I expect such
knowledge is already coded into animal genomes. And as I continued to address Sokoban
levels, I encountered several other conceptual problems, each of which I recognized as
separately solvable; in each case, I suspect, recognizing this because I already essentially
had a module coding for it in another context, or a programmatic structure that told me it

it is the best program according to one's bias. Given no particular bias, one thus searches uniformly breadth first.
By contrast, hill-climbing roughly speaking adopts the position that good programs are clustered. If one wants to
find the absolute shortest program, making variations in a good program might be a worse idea than searching in
an unbiased way. But in a domain where good programs are clustered, the bias-optimal approach might fail where
a hill climbing approach would find a program sufficiently compact to generalize. For example, Ellington and
Szostack [16] suggested that RNA might find interesting programs because the space of RNA sequences contains
a sufficient density of sequences that have a small ability to catalyze a particular reaction, that one such sequence
can be found with feasible-size random search; and then hill-climbing on this sequence may rapidly generate a
good catalyst. It won't be the best possible, but an unbiased search for the best would likely be completely
infeasible.

%I also had previously developed the ability to apply this module in navigating around a map, from a top down
view. I recall watching my young child develop this ability on a video game, and it took some days or weeks to
construct.

could be analyzed separately’.

My working hypothesis is thus that code may be feasibly constructed if enough
guidance is provided, and we should ask how and in what forms guidance is provided
within humans, and how we can provide guidance for artificial systems.

My model for how pre-coded structure can guide program construction is based on
what I call a ““scaffold". A scaffold is a procedure, which may have arguments, together
with annotations that give guidance in how to construct or select procedures to feed in to
the arguments. Thus a scaffold may be written:

P(a, a,,...,a)[c1,Ca,...,Chl

where P is a procedure or a function, the a;are its arguments, and the c; are annotations,
c; giving instructions in how to construct the j-th argument. Here P(a; a,,...,a,) may be a
specific procedure or function in the ordinary sense of computer programming, and may be
written in a standard programming language, such as C, Python, or Lisp. P may also take
an indefinite number of arguments, as for example dotted tail notation supports in Lisp.

When a scaffold is used, it first must be trained. In this phase, programs are
constructed or evolved that substitute for the arguments. The annotations guide this
process. The trained scaffold is then a module that can be applied.

An example of a scaffold without annotations might be the following. In
Schmidhuber's experiments, he supplied some key macro-instructions called defnp, calltp,
and endnp, each a separate module about 15 primitive instructions long. These proved to be
useful for constructing recursive functions, and after he added them to the instruction set,
his searcher was able to discover a program solving Towers of Hanoi after some days of
search. But in fact, the final program's use of these instructions turned out to be in the
forms (defnp a calltp b endnp) and (defnp a calltp b calltp endnp) where a and b represent
slots into which other code was substituted. So maybe what was really wanted was a
framework (defnp ((a calltp) b .) endnp) where by the notation (x .) [mean an arbitrary
number of copies of structure x (biased toward a small number). Given such a structure, we
have to construct code for a number of modules (in this case, by use of the dot notation, an
indeterminate number of modules but in many cases a fixed number), and substitute them
in to give the final module. This would have restricted the search space for the overall
program much more than the simple instructions that Schmidhuber in fact used, which for
example did not contain ordering information. The idea of scaffolds is to support such
constructions, and to furthermore greatly guide the search for appropriate programs by

7 My ability to continue adding new techniques when faced with new problems requiring them, is thus
conjectured to rest on my large existing library of modules not yet tapped.

allowing appropriate annotations.

There are at least five types of annotations that may be supported. Type 1 annotations
suggest plugging in another scaffold in place of a particular argument. A list may be
supplied, and tried in order (until one is found that works). These scaffolds are trained also
(in depth first manner, discussed more below).

Type 2 annotations are text, giving instructions for example to a human programmer.
(These same kinds of instructions could be read and processed by an appropriate module or
program, provided it had sufficient knowledge already coded in to recognize and
appropriately respond. At the present state of AGI development, human programmers are
more readily available.) They often suggest supplying certain kinds of training examples to
learn a program. For example, a type 2 annotation might suggest supplying examples of
deadlocks to a module constructor to produce a deadlock detector, which would then be
substituted in to the appropriate place in an RBP scaffold with a slot demanding a deadlock
detector. My hypothesis is, whenever we can separate out a sub-problem in a useful way,
and either supply code for it, or train it from independent examples, that greatly cuts the
search in finding the overall program, so such sub-problems should be addressed first
where feasible.

Type 3 annotations specify particular kinds of module constructors to be used in
constructing a program for a slot. By a module constructor, I mean a program that is fed
such things as training examples, an instruction set out of which to build programs, an
objective function, etc., and which then builds an appropriate program, for example by
performing search over programs or evolutionary programming. For example, I have
developed specific types of evolutionary economic systems (EES) that evolve programs
that efficiently search for solutions, and variants of these that work in adversarial
environments such as games. Standard evolutionary module constructors evolve programs
to solve a problem. Hayek, for example, discovers a collection of agents so that, presented
with a problem, a single sequence of agents will be considered that (hopefully) solves it.
These new types of EES evolve programs that apply a focused search when solving a new
problem. They thus learn search control knowledge appropriate for responding to various
outcomes. Certain classes of problems seem to require search, so they will be appropriate
in certain slots of scaffolds. In other slots of scaffolds, a neural net training might be more
appropriate.

Type 4 annotations specify or constrain which instruction sets or instructions are to be
used in building the program. Program evolution or construction is much more efficient
when it is restricted to building the module out of instructions likely to be appropriate for
the task at hand, and as few distracting instructions as possible. Guiding the instruction set
can make a vast difference to the efficiency of a module constructions.

Type 5 annotations specify improvement operators (e.g. kinds of mutations to be used in
evolving a module) (which again may be critical). Other kinds of annotations might be
imagined.

Scaffolds may be trained by a straightforward algorithm. We begin by walking down
depth first filling in scaffolds suggested by annotations of type 1 for particular slots. When
we find an internal problem with independent training data (a sub-problem that can be
independently trained, for example with an annotation specifying what data is to be
supplied) we train that first, recursively, and assuming we find code that solves that sub-
problem, we fix that code. Alternatively if we fail on such a specified sub-problem, we
backup to a previous choice point in the search. When doing a module construction (for
example, at the top level, with candidate scaffolds within filled-in and all internal
independent problems already solved) we use a method that preserves whatever parts of the
structure have been fixed. For example, we may do evolutionary programming where the
only crossovers and mutations that are allowed respect the fixed parts of the code; or we
may do search where parts of the code are fixed.

Note that this algorithm involves a certain amount of search- but if the scaffolds are
appropriately coded, vastly less than would be necessary without them.

Of course, especially if annotations indicate what is wanted, a programmer may
supply some modules by hand. This may sound contrary to the spirit of AGI, but actually
much of human thought works that way also. In my picture, for example, humans
approach games with (among other things) a scaffold that knows about search and needs to
be fed an evaluation function. But when you first learned to play chess, you did not develop
your own evaluation function. A teacher told you, consider material, 9 points for a queen, 5
for each rook, and add it all up. Later, you improved this evaluation function with other
terms.

Some examples of interesting scaffolds are the following. A scaffold for combining
causes. It asks to be presented with training examples of cause 1, and then applies a
specified EES module constructor to build a collection of agents dealing with cause 1.
Then it repeats this process for as many different causes as are presented. Finally, it
extracts all the separate agents, merges them into a single EES, and trains this on presented
examples in order to create code for interaction effects between the causes. A particular
application for such a scaffold might be to solving life or death problems in Go. Game
search Evolutionary Economic Systems that have agents suggesting moves killing or
saving groups are first trained on examples with a single theme-- for example problems
where the group can run to safety (or be cut and so prevented from running to safety). A
second such G-S EES is trained on examples where the group can make internal eyes, or be
prevented from making internal eyes. And so on. The agents are then extracted from these

individual EES-es, and placed into a single EES, which is then trained on general examples
(and thus learns to deal with interaction effects, for example feinting at a run in order to put
down a stone useful for making internal eyes.) Such a scaffold includes fixed code: such as
the EES code that holds auctions and determines what computation is done given a
particular collection of agents reacting to a particular problem. It also includes annotations,
specifying that a sequence of examples be presented of differing causes; specifying that
specific module constructors are applied to learn from them; possibly specifying that
specific instruction sets (e.g. pattern languages) are used to code the agents. It breaks up an
evolutionary programming problem that would possibly be intractable into a series of more
tractable ones.

A scaffold for graph based reasoning GBR(W,P,Q.,R)[annotations] embodies
knowledge of two dimensional graphs. It is presented with W, a world state supplied to the
program consisting of a grid (representing a 2-dimensional problem) with a data structure
assigned to each node of the grid (representing state at that location). The annotation
specifies that an appropriate W be presented. P is a program that processes W and marks
grid points according to whether they belong to local structures, which we call groups. The
annotation specifies that either such a P should be supplied, or examples supplied from
which it can be evolved. Q then is a program that evaluates groups, in the context of
neighboring groups. Again, Q may be supplied or learned from examples. Finally R is a
program that combines Q evaluations to an overall evaluation. R may be chosen from a list
of useful scaffolds and functions (summing values will often be useful, in some adversarial
games a complicated alternating sum will be appropriate) or learned from examples.

RBP can be formulated as a scaffold. It contains a fixed procedure that finds candidate
plans, then organizes the refinement of candidate plans to find an effective plan. To find the
candidate plans, it needs to call domain dependent operators that must be supplied or
learned. The fixed procedure may code in dynamic programming, but it must plug in
actions and a simulation that are domain dependent, and in order to do this it must have a
module that recognizes which obstacles to applying operators may be affected, and
specifies what state will be reached by contra-factual application of an operator (under the
hypothesis that one or more affectable obstacles can be overcome). It also benefits from a
supplied, domain dependent deadlock detector, which not only detects configurations of
objects preventing success, but identifies the objects. But such modules as a deadlock
detector, or a contra-factual state generator, can in principle be learned from supplied
examples, and if appropriate examples can be supplied by a programmer (or generated
automatically), this is a much smaller task than producing a program to solve the initial
planning domain at one fell swoop.

Conclusion

My current working hypothesis is that understanding a domain requires having a
library of scaffolds and modules exploiting the structure of the domain, either allowing
problems to be immediately solved, or giving sufficient guidance that programs solving
them can constructed with feasible amounts of computation. Such structure was evolved
before humans came on the scene, and humans have built extensively on it, greatly
increasing the power of human understanding over ape. Evolution threw vastly more
computational power at this problem than we have available, and the human contribution
involved the efforts of billions of brains, so constructing understanding systems may be
difficult.

However, we have advantages that evolution didn't have-- namely our brains, which
use all this previous structure. It is thus possible we can construct the requisite structures,
and more likely still that we can get there by a collaboration of programming and
computation. So the path I propose is that we set out to construct useful modules and
scaffolds. When we come to a module embodying a concept that we can provide examples
of, but not readily program, we attempt to produce it using a module constructor. If that is
too difficult, we may supply useful sub-concepts, or recursively produce the useful sub-
concepts from supplied examples and instructions. At any given step, both at top or at
bottom, we have available automatic module construction as well as programming. That is,
a module embodying a new concept can always call existing programs if their names are
supplied in the instruction set to the module constructor; and if it can not readily be built
like that, we may first try to produce (by training or programming) other useful sub-
concepts. The only requirement is that enough guidance be provided, either by existing
scaffolds, or by programmer intervention, or by supplying training examples, that each
module construction be feasible.

Acknowledgements

Work funded in part by DARPA under grant #HR0011-05-1-0045 Thanks to Tom

Schaul for writing the Sokoban program.

References

[1] Laird, J.E., A. Newell & P.S. Rosenbloom.(1987) SOAR: An Architecture for General Intelligence. Artificial
Intelligence 33:1-64,.

[2] Baum, Eric. (2004) What is Thought? MIT Press, Cambridge, MA.

[3] Hutter, M. (2006) Universal Algorithmic Intelligence: A Mathematical Top->Down Approach,pp 228-291 in
Artificial General Intelligence (Cognitive Technologies) (Hardcover) by Ben Goertzel and Cassio Pennachin
(eds), Springer

[4] Schmidhuber, J.(2004) Optimal Ordered Problem Solver, Machine Learning 54, 211-254.

[5] Smith, W. D. (2006) Mathematical Definition of “Intelligence' (and Consequences), preprint, reference 93 on
http://math.temple.edu/~wds/homepage/works.html

[6] Gray, P A. et al,(2004) Mouse Brain Organization Revealed Through Direct Genome-Scale TF Expression
nalysis Science 24 December 2004: Vol. 306. no. 5705, pp. 2255 - 2257

[7]1 Lakoff, G., Johnson,(1999) M. Philosophy in the Flesh, the embodied mind and its challenge to western
thought, New York, Basic Books.

[8] Dreyfus, H. L.,(1972) What Computers Can't Do, Cambridge MA MIT Press

[9] Myers, A. Xsokoban, http://www.cs.cornell.edu/andru/xsokoban.html

[10] Nugroho, R. P. ,(1999), Java Sokoban, http://www.billybear4kids.com/games/online/sokoban/Sokoban.htm

[11] Culbertson, J. C., (1997) Sokoban is PSPACE-complete. Technical Report TR 97-02, Dept. of Computing
Science, University of Alberta.

[12] Boese, K. D. (1995) Cost Versus Distance in Traveling Salesman Problem, UCLA TR 950018,
http://citeseer.ist.psu.edu/boese95cost.html

[13] Baum, E. B. & I. Durdanovic. (2000) Evolution of Cooperative Problem-Solving in an Artificial Economy.
Neural Computation 12:2743-2775.

[14] Baum, E. B. & I. Durdanovic.(2002) An artificial economy of Post production systems. In Advances in
Learning Classifier Systems, P.L. Lanzi, W. Stoltzmann & S.M. Wilson (eds.), Berlin: Springer-Verlag, 3-
21.

[15] Schaul, T. (2005) Evolution of a compact Sokoban solver, Master Thesis,, Ecole Polytechnique Fédérale de
Lausanne, posted on http://whatisthought.com/eric.html

[16] Ellington, A. D., and J. W. Szostack, (1990), In vitro selection of RNA molecules that bind specific ligands.
Nature 346:818-822.

http://www.cs.cornell.edu/andru/xsokoban.html
http://math.temple.edu/~wds/homepage/works.html

