Relevance Based Planning: A Worked Example

Eric B. Baum

Baum Research Enterprises
41 Allison Road
Princeton NJ 08540
ebaum @fastmail.fm

Abstract

The problem addressed is of planning how to achieve goals
in a domain simulation. A method called Relevance Based
Planning(RBP) is discussed and exemplified in the game
Sokoban. RBP forms a high level plan, then refines it in a
causal way that substantially reproduces introspection. As
the plan is refined, recognition of problems or patterns in a
simulation summons methods for solving the problems
(which may recursively involve RBP).

Introduction

Look at figure 1. This is a level from the game "Sokoban",
which the reader is encouraged to play on the web a few
times. The player controls the man, who can take one step
in any direction, and can push (but not pull) one box, but
only one at a time, and only if there is empty space on the
other side of the box. The object of the game is to push all
of the boxes onto goals (places marked with red stars). A
particular map is called a level. (Another level is shown in
figure 3.)

This game makes an interesting example for AGI
Projects because it is extremely hard to solve (technically
speaking, the game is P-Space complete) and because
levels have been crafted that exercise a variety of human
cognitive abilities (the goal of the level creators having
been to create levels that are interesting to players).
Humans make complex use of a large number of
interesting concepts in solving these levels. A program to
solve this game in a way mirroring human solution will
thus be hierarchically built on top of subprograms
implementing various concepts, such as "deadlock".

By a deadlock I mean, a (partial) box configuration
where the level is no longer solvable. For example, if two
boxes are side by side along a wall then neither of them
can be pushed, because there is no position where the man
would be pushing only one box. So neither of them can be
pushed onto goals, and (excepting cases where they are
both on goals already) the level has become not solvable.
There are lots of locally recognizable configurations like
this which constitute deadlocks, and with experience a

human player learns to recognize numerous deadlock
patterns, and an important part of playing is analyzing
suspicious local configurations of boxes to see if they have
become deadlocks. This analysis can be subtle (indeed, the
general problem of identifying deadlocks is P-Space
complete). Eventually, if we are going to build a program
to solve Sokoban in human fashion, we will need
subprograms that recognize deadlocks. A first start at such
a subprogram might contain a number of deadlock
patterns, such as the pattern: two boxes against a wall, and
shout when it recognizes a pattern indicating that a
deadlock has been created, and return a specification of
which boxes are involved.

Figure 1. A Sokoban level

T 2 e 2 P e

[T T T[T
N ) B 0 e O

A slightly more sophisticated deadlock recognition
program (which would invoke the first start as a
subprogram) would perform a local search to see if boxes
could be usefully pushed, whenever a suspicious pattern
was recognized. For example, whenever a collection of
boxes and walls form a barrier that topologically divides
the level into two pieces, and thus prevents the man from
reaching some part of the level without pushing a box (in
order to penetrate the barrier), that is a candidate deadlock.
For example, in figure 1, the boxes at (4,4) and at (6,7)
form a barrier, preventing the man from reaching the
region at (4,6) without pushing one of them. If there were
no way for him to get behind the box at (4,4), then he
could never push it down to a goal, and there would be a



deadlock. So it would be useful to perform a search to see
whether in fact there is a way that he can push boxes out of
the way and get behind this barrier, without causing some
other recognizable deadlock in so doing.

Notice how human reasoning about the game exploits
topological concepts (such as that a barrier separates a 2
dimensional region into two disconnected components) and
locality (for example, you do a spatially local analysis on a
pattern to determine deadlock), and is able to do these
things by analyzing the 2-d game simulation.

It is a goal to build a hierarchic collection of modules,
procedures, that acts on the simulation domain and roughly
recreates the thought processes a human player might go
through in solving Sokoban problems. An attempt to do
this by hand coding discussed previously (Baum,2007). (I
now expect that construction of such programs will require
a collaborative effort between human and automated
processes(Baum, 2008).) Here we will work an example in
some detail to indicate how the function that we call
Relevance Based Planning works, and then describe how
the hand coded program was based on it, and make a few
comments on how we might go about constructing a fully
successful program.

An Example of Move(a,b)

Lets first consider a problem simpler than actually
solving the game, that of getting the man to other
locations, without creating a deadlock. A procedure
move(a,b) that does this would be a very useful
subprogram-- we will constantly need to use it to check if
we can get behind barriers, and constantly need to use it to
get behind boxes we want to push into goals or out of the
way of other boxes. So in particular, consider the problem
of moving the man from its current location at (2,1) to
4,9).

Now, obviously, there are two high level plans we might
consider. We might go through the portals at (4,5) and
(4,8) (which will require dealing with the boxes at (4,4)
and (4,7) first) or we might go through the portals at (7,5)
(6,7) and (4,8) (which will require dealing with the boxes
at (6,7) and (4,7) first). This is a good example of
hierarchical planning: we first form high level plans, based
on analysis of the simulation domain, and knowledge about
what obstacles in it are affectable, and then proceed to
analyze whether the obstacles can in fact be dealt with. In
the case of navigation in domains like this, you can just
engage in search, or dynamic programming, to find paths
through boxes but avoiding walls. More generally, you
might invoke a dynamic programming that allows
contrafactuals-- if only this box weren't here-- and
considers paths that could reach the goal. To make this
work, however, you need knowledge about which
contrafactuals are sensible-- you allow contrafactuals about
affectable obstacles, like boxes, (because you might later
be able to find a way to deal with these obstacles and refine
the plan until it is implementable) but not about
unaffectable obstacles, like walls.

Lets consider first the path through (4,5). The first
obstacle is the box at (4,4). We consider pushing it left, to
(3,4), but that causes a deadlock (a box in a corner). So
instead we consider pushing it right, to (5,4) but that also
causes a deadlock, two boxes along a wall. But this time,
the box at (6,4) is part of the deadlock, and that is an
affectable object. So lets consider pushing this box out of
the way, before we move the box at (4,4).

So we consider first pushing the box at (6,4) to (7,4).
Now this forms a new barrier (with the box at (6,7)
potentially preventing us from accessing the upper right
chamber. So we first have to analyze whether this barrier
could later be penetrated, or whether it will form a
deadlock. (This amounts to a recursive call on move(a,b) to
see if we can get behind this barrier.) That analysis shows
this is a deadlock, unless we take another preparatory
move. For example, before moving the box from (6,4) to
(7,4), we push the box from (8,4) to (9,4). Doing this
makes a space at (8,4) that allows the pusher access to push
the box at (7,4) back to (6,4) and open a path to the
chamber, so the deadlock is avoided.

OK, so our current plan is: first push (8,4) to (9,4); then
push (7,4) to (8,4); then push (4,4) to (5,4), and now we
can access the chamber at (4,6). So let's proceed forward
on our first candidate plan to get to our goal at (4,9), which
now requires pushing the box at (4,7) out of the way. We
can't push it left, without deadlock, to push it right requires
first moving the box at (6,7). We can't push this box right,
unless we first push the box at (7,8) up. To push the box at
(7,8) up, we need to access (7,7) (because that's the square
the man must push from).

So now we realize, we should have pushed (7,8) up to
(7,9) before pushing the box at (7,4) to (8,4)! So we revise
our plan to insert this push earlier, and we have a complete
plan:
first push (8,4) to (9,4); then push (7,8) to (7,9); then push
(7,4) to (8,4); then push (4,4) to (5,4); then push (6,7) to
(7,7); then push (4,7) to (5,7); and now the man can access
4,9).

I hope the reader will agree that this is basically the way he
would think about the problem (at least after a little
practice with Sokoban). A high level algorithm for doing
this in a more general context is sketched in figure 2.

Figure 2, Relevance Based Planning Pseudocode:

(1) Find high level plans by search or dynamic
programming in which you consider plans that ignore
affectable obstacles (allow counterfactual steps which are
known to be potentially remediable).

(2) Refine one of these in time order.

(3) For each obstacle in the plan as you consider it, invoke
a method that attempts to deal with the obstacle. This
method typically is informed about the type of obstacle.
The method typically performs some search on the



simulation domain (and may often invoke or even
recursively call RBP).

Such calls to clearing methods typically pass
information about higher level goals within the plan, and
the called clearing method may then avoid searching a set
of actions to remove the obstacle that would have as
prerequisite previously achieving a higher level goal. For
example, in clearing a box out of the way so that the
pusher can get to the other side of a barrier, the clearing
method will not consider pushes that require already
accessing the other side of the barrier.

(4) If the search encounters other problems that would
require earlier actions, back up to attempt those actions
first (typically by invoking a method for dealing with that
obstacle). For example, each box move must be checked to
see if it causes a recognized deadlock. If it does, you need
to back up and first invoke a method for preventing the
deadlock from arising. This method performs a search over
ways of first pushing other boxes involved in the
recognized deadlock, trying to achieve the goal of finding
a configuration where the desired push won't cause a
deadlock. (Note, the deadlock detector needs to return the
collection of boxes involved in the deadlock for this to be
done.)

(5) When changes are made in the domain, mark them, so
that if they encumber later actions, you can back up and try
to insert the later actions first to avoid the problem.

(6) You also need a method of backing up to other high
level plans when it is discovered that a high level plan can
not be made to work, or of switching between high level
plans as more information is uncovered about them. One
effective method, that finds the cheapest plan in Sokoban
man moves, is to maintain a set of all candidate plans in
parallel, working on the cheapest estimated one at any
time. As pushes are added to a candidate plan, update its
score (and switch to working on another one if candidate
plan with a less expensive estimate is available). As
alternative fixes are discovered (for example, to prevent a
deadlock from occurring involving barrel A you may try
different directions of pushing barrel A out of the way) add
a new candidate plan to the set for each such push. Keep a
hash table of board configurations, and if you ever hit a
duplicate position, delete all candidate plans but the
cheapest for reaching it.

Discussion

RBP illustrates the power of the use of the simulation
domain. You form a high level plan over the simulation
domain. Then you proceed to analyze it in interaction with
the simulation domain. As modules are executed to solve
problems, the interaction with the simulation domain
creates patterns that summon other modules/agents to solve
them. This all happens in a causal way: things being done
on the simulation cause other things to be done, and

because the simulation realizes the underlying causal
structure of the world, this causal structure is grounded.
This interaction with the simulation domain is unlike any
other I am familiar with in the planning literature. It also
powerfully focuses the search to consider only quantities
causally relevant to achieving the goal. It also reproduces
introspection.

Many planning methods choose not to work in time
order for various reasons. But by working on a candidate
plan in time order, you are assured, at the inner most loops
of the program, of only spending time considering
positions that you know you can reach, and which are
causally relevant to a high level plan.

Note also that this construction of the program by
composing a series of feasible-sized goal oriented
searches mirrors the basic structure of biological
development (cf (Baum 2008)), and is similarly concisely
coded and robust.

A larger meta-goal of the project described in (Baum
2008) is to construct Occam programs, programs that are
coded in extremely concise fashion so that they generalize
to new problems as such problems arise (or so that the
programs can be rapidly modified, say by a search through
meaningful modifications, to solve new problems). As has
been discussed(Baum 2007, 2008), search programs are
incredibly concisely coded, so that coding the program as
an interaction of a number of search programs can be a
mode of achieving great conciseness. Note how this
concise program generalizes over Sokoban levels and
positions and man origins and destinations.

Caching the results of the local searches enables them to
be rapidly swapped into alternative plans (plans that differ
in other regions, for example), speeding the overall
computation and again mirroring introspection (which
shows that I solve Sokoban and other problems by finding
and then composing local solutions to parts of the problem
using the overall simulation environment to interleave the
local solutions causally.)

At the lowest level searches, for example preventing
deadlocks from occurring, an initial class of methods may
simply do a search over all actions that might be relevant.
For example, when we were trying to push (4,4) to (5,4)
above, and realized we would form a deadlock with (6,4),
we called a method to prevent this deadlock, and a naive
version of this method would simply try all pushes of (6,4),
and might initially consider pushing (6,4) to (5,4) (which a
human player would recognize doesn't make any sense).
Even being naive about these methods in this way still
greatly reduces work that must be done, because the
problem is factored into a number of small searches that
only consider potentially relevant actions. An alternative to
considering all potentially relevant actions is to have (or
learn) knowledge that allows this search to be pruned in
other ways. For example, introspectively, I recognize lots
of local patterns that I use to prioritize such searches. I will
tend to consider first moves into open areas (and not
consider moves into patterns I recognize as a deadlock). In
fact, introspectively, a frequent reason for my getting stuck



in solving a Sokoban instance is that I have rejected the
correct move because it matches some pattern that I
regarded as meaning it wouldn't work; and a big
improvement in my game came when I learned a number
of patterns that fool players in this way, that is by
resembling deadlock patterns, (I suspect designers of
building these in on purpose) and learned to search such
moves first. In general, recognizing patterns involves a
local search of its own, so unless the patterns are well
chosen and implemented, need not be faster or more
effective than simply doing a broader search. However, if
an Evolutionary Economic System (EES) (Baum, in prep)
based on local pattern recognizing agents is used to learn
or improve these modules for dealing with problems, it
should naturally learn this kind of pattern knowledge,
reproducing introspection, and, because of the economic
framework, learn only patterns that improve efficiency.

The general structure described in Figure 2 could be
regarded as a Scaffold, a Procedure that takes a number of
arguments, themselves procedures, that need to be filled in,
for example by a module constructor, to work in a specific
example(Baum, 2007). This scaffold would need to be
supplied with a domain simulation, a procedure for finding
high level plans, and procedures for recognizing and
dealing with obstacles, and possibly other extensions. The
RBP scaffold can then be reused in various contexts, for
example can be used within module constructors to
construct some of the submodules. Obviously such a
structure promotes concise code through code reuse, and
represents an analysis method that in a sense “understands”
how to use high level plans and how to exploit causality.

Once you have a scaffold for RBP, and/or modules
written implementing RBP, these can be supplied as
instructions out of which EES's and other module
constructors can build other modules or agents. A simple
example of this was described in (Schaul, 2005).

RBP for Sokoban Solving

A draft program written by Tom Schaul to my direction
(also discussed in (Baum 2007) was intended to solve
Sokoban by applying a version of RBP, with all of the
code, including all the subsidiary modules, written by
hand. The method involved first finding high level plans
for bringing barrels into goals under the contrafactual
assumption that barrels not yet placed on a goal for the last
time were permeable to other barrels, then selecting a high-
level plan based on estimated cost, and following it in time
order trying to resolve obstacles, and then backing up to
other plans in a causal fashion to resolve pusher access
constraints as found.

Although following the same basic structure as Figure 2,
this is a somewhat more sophisticated planner in a few
ways than that exemplified for move(a,b). First, step 1 in
the pseudo code above, the high-level plan finder, is a
composite of several modules. It involves a matching
analysis and a goal area analysis. The matching analysis
used a version of a standard matching algorithm to find

one-to-one correspondences of boxes to goals, where each
correspondence is achievable (given the flow pattern of the
level) if boxes could pass through other boxes. The goal-
area analysis found orderings of the goals. In any complete
and working plan, there must be a first time for each goal
that a box is placed on it and never moved again. Such a
box was declared “petrified”, since it is like a wall, in that
it (by definition) can never be moved later in the plan. By
analysis of the goal area(s), a planning module found an
ordering of the goals from first petrified to last, assuming
all non-petrified boxes are permeable, but no petrified
boxes are permeable. This necessarily involves plans that
include temporarily stowing boxes in intermediate
locations where they will be able to reach later solved
goals without violating petrified goals (because it is a
property of Sokoban that such situations arise). This
component of the problem (goal area analysis) mirrors an
introspective component that humans use cognitively to
factor the problem.

So the high level plan finder already includes a
factorization of the problem (separating bringing boxes up
to goal areas in such a way that one box corresponds to
each goal, and goal area analysis) and the use of the
simulation domain in sophisticated ways to incorporate
local structure.

The high level plans generated here thus involved an
order in which boxes are brought up to goals and parking
locations, and an order for the goals to be petrified. Step 2
picked such a high level plan and went through it in time
order. One way of doing this is to go through in order of
goals from first petrified to last (or when a box must be
stowed in a parking location before a goal is petrified, said
parking location ahead of said goal) and to pick the box
which is part of a legal matching that in a heuristic sense is
nearest that destination (goal or parking location), and to
attempt to solve that subtask next. Solving this subtask by
the method of figure 2 involves planning to achieve
accesses-- to move the man to locations where he is needed
to accomplish pushes-- and involves planning to test
whether various pushes that are made result in deadlocks,
so it should involve recursive calls on RBP (or in any case,
one or more implementations of RBP to solve
subproblems).

In principle this can exploit causal constraints in a
powerful way similar to how I introspectively would.
Consider figure 3.

Figure 3: Another Sokoban Level



You need to recognize that you should first solve goal (7,4)
because it is completely safe-- it can't block anything else
you want to do. (Safety being a concept useful in goal
ordering for which you must create a module.) Then you
might (for example) try solving goal (5,6) next. If you do
that, the box you place there would be marked (as
described in step 5 of figure 2). As you continue, you will
eventually discover this marked box is interfering with
accesses, because there will be a barrier you will be unable
to cross that includes the box at (5,6) and the box at (8,2).
So RBP will say you should insert ahead of pushing the
box to (5,6), moves that clear the box at (8,2) so that there
is an access. Searching to clear (8,2) will involve
discovering that you have to first push the box at (6,2) out
of the way and etc. (to do this you can find by forward
search a long sequence of preparatory moves) and will lead
to a solution using essentially the same concepts I use
introspectively-- it realizes it has to prioritize clearing this
access and then does a forward, goal oriented search, that
accomplishes that subject to access constraints.

Our attempts to build this Sokoban player by hand using
RBP did not however succeed in realizing the full vision
(although they resulted in a program that solved a third or
so of standard hard levels it was tested on(Baum 2007)).
Some lessons I learned from this are the following.

You can not write the inner modules, such as the
deadlock detector, or the methods for dealing with various
kinds of obstacles, by hand. Our project failed for similar
reason (IMO) as did SHRDLU- because we tried to hand
code it. None of the modules captured the desired concept
adequately. These things need to be coded by module
constructors(Baum 2008). Moreover the system, being
hand coded, had no way to adjust the modules and their
interaction to correct for the problems. If instead they
were, for example, Evolutionary Economic Systems, that
learned from new examples and adapted, the system could
evolve to solve its problems.

And the coding needs to be concise, Occam. The coding
that was attempted, by hand, did not attempt to be concise
in the sense of Occam's razor. It did not, for example,
make recursive call on RBP for internal problems, but
rather inserted such in an ad hoc way. Similarly, it made
no use of scaffolds. The coding should be (automatically)
done in terms of a collection of goal oriented agents, built
(for example, using Evolutionary Economic Systems) on
scaffolds such as RBP.

The method that I use, introspectively, to solve Sokoban
does not proceed from beginning to end by a master RBP.
It proceeds in a goal oriented fashion, using goal oriented
modules based on RBP, caching local knowledge as it
goes, and gradually learns or discovers various
components of how to solve the problem, including such
things as, in the discussion below Figure 3, that you have
to prioritize clearing the access at (8,2). It includes
modules with goals such as safe parking, clearing access,
going forward as far as forced in a position, and so
on.(Baum 2007).

Each such module should be concisely built, typically
using an RBP scaffold, calling other such modules as
desirable, and adjusting itself, if problems are encountered,
to address them.

References

Baum, Eric B. 2004. What is Thought? . Cambridge, MA:
MIT Press.

Baum, Eric B. 2007. A Working Hypotheses for Artificial
General Intelligence. In Advances in Artificial General
Intelligence: Concepts, Architectures and Algorithms, eds.
Goertzel, B., and Wang, P., IOS Press, pp 55-74.

Baum, Eric B. 2008. Project to Build Programs That
Understand. Submitted (this volume).

Schaul, T. 2005. Evolution of a compact Sokoban solver.
Master Thesis, Ecole Polytechnique Fédérale de Lausanne.
posted on http://whatisthought.com/eric.html.



